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A numerical model for two-dimensional flow around an airfoil undergoing prescribed
heaving motions in a viscous flow is presented. The model is used to examine the flow
characteristics and power coefficients of a symmetric airfoil heaving sinusoidally over a
range of frequencies and amplitudes. Both periodic and aperiodic solutions are found.
Additionally, some flows are asymmetric in that the upstroke is not a mirror image of
the downstroke. For a given Strouhal number – defined as the product of dimensionless
frequency and heave amplitude – the maximum efficiency occurs at an intermediate
heaving frequency. This is in contrast to ideal flow models, in which efficiency increases
monotonically as frequency decreases. In accordance with Wang (2000), the separation
of the leading-edge vortices at low heaving frequencies leads to diminished thrust and
efficiency. At high frequencies, the efficiency decreases similarly to inviscid theory.
Interactions between leading- and trailing-edge vortices are categorized, and the effects
of this interaction on efficiency are discussed. Additionally, the efficiency is related to
the proximity of the heaving frequency to the frequency of the most spatially unstable
mode of the average velocity profile of the wake; the greatest efficiency occurs
when the two frequencies are nearly identical. The importance of viscous effects for
low-Reynolds-number flapping flight is discussed.

1. Introduction
The oscillation of an airfoil-like appendage – ‘flapping’ – is a common form of

propulsion for many animals. Flying animals (birds, bats, insects) generally use
flapping to generate both thrust and lift, while many swimming species (fish, aquatic
mammals) use flapping primarily to generate thrust. Recently, much effort has gone
into the design and construction of devices propelled by flapping, including robotic
fish (Triantafyllou & Triantafyllou 1995), ornithopters (Smith 1997), and micro-aerial
vehicles (Ashley 1998). One of the primary design challenges in these efforts has been
the understanding of the unsteady fluid mechanics of flapping.

The generation of thrust by an oscillating airfoil has a notable effect on the qualita-
tive structure of the wake. Behind a slowly oscillating airfoil, the wake consists of a
Kármán vortex street similar to that behind a bluff body; the sense of rotation of the
vortices is a result of the momentum deficit behind the airfoil, corresponding to net
drag. Conversely, by oscillating the airfoil more energetically, the wake is ‘inverted’
and the vortices have the opposite sense of rotation to that behind a bluff body,
indicative of a jet of fluid behind the airfoil and the development of thrust.

Thrust production by an oscillating airfoil was first described in the early part of the
twentieth century. Knoller (1909) and Betz (1912) independently noted that the vertical
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motion of an airfoil produces an effective angle of attack so that the resulting normal
force vector has a component in the forward direction. Later, Katzmayr (1922) made
the first experimental observations of this effect and Ober (1925) provided additional
theoretical explanations and simple calculations for Katzmayr’s results.

Experimentally, Freymuth (1988) demonstrated that an airfoil undergoing either
pure pitching or pure heaving is capable of producing thrust. Thrust production due
to pitching was also demonstrated by Koochesfahani (1989). Lai & Platzer (1999) and
Jones, Dohring & Platzer (1996) used a water tunnel and laser-Doppler velocimetry to
obtain high-resolution velocity measurements in the wake of a purely heaving airfoil.
Their experimental results confirmed the calculations of Triantafyllou, Triantafyllou &
Grosenbaugh (1993), which identified the Strouhal number,

St ≡ f A

U∞
, (1.1)

as an important parameter for thrust generation. Here, f is the frequency of oscilla-
tion, U∞ the free-stream velocity, and A is twice the amplitude of motion measured
from the mean position (used as the scale for the width of the wake). Lai & Platzer
(1999) noted that the structure of the wake (drag or thrust) can be classified according
to the Strouhal number, with those motions below a threshold of St ≈ 0.06 (converted
to the current definition of St) producing drag and those above producing thrust.
Additionally, at large St (St > 0.6), they observed that the wake becomes asymmetric,
with the vortex street deflected from the mean position.

Theodorsen (1935) and Garrick (1936) made theoretical calculations of an airfoil
undergoing small-amplitude heaving oscillations in an ideal fluid. Their linearized
theory showed that all pure heaving motions generate thrust and that thrust is
proportional to the square of the frequency. Further, they noted that the propulsive
efficiency, defined as the average output power from thrust divided by the average
input power, approaches 1.0 as the heaving frequency approaches zero and drops off
asymptotically to 0.5 at high frequencies. Others later applied inviscid methods to
animal propulsion and extended the theory to include nonlinear effects and large-
amplitude motions (Lighthill 1969, 1970, 1975; Chopra 1974, 1976; Chopra & Kambe
1977; Wu 1971). These models again concluded that the propulsion efficiency is
maximized as the frequency approaches zero.

Hall & Hall (1996) developed a vortex lattice method to determine the optimal cir-
culation distribution for a prescribed combination of lift and thrust. The method con-
sisted of finding the time-dependent circulation distribution that minimizes induced
losses without concern for the details of the mechanics of the flapping motion. This
method was later extended by Hall, Pigott & Hall (1998) to include a viscous drag
component determined from quasi-steady analysis at each wing station. The model
explicitly assumes light wing loading and low reduced frequencies.

Several authors have used lifting-line methods to study flapping flight. Betteridge &
Archer (1974) and Archer, Sappupo & Betteridge (1979) developed a method that
included twisting of the wing, but excluded unsteady effects of the vortex wake. Phlips,
East & Pratt (1981) extended the method by modelling the wake using a near com-
ponent consisting of a vortex sheet and a far component consisting of discrete vortices.
Self-induced convection of the wake was neglected, and the method was also limited
by low-frequency flapping and inviscid assumptions. Ahmadi & Widnall (1985, 1986)
developed a lifting-line method using singular-perturbations and Willmott (1988)
developed one using matched asymptotic expansions. Both models were based on
linearized equations and were restricted to small transverse oscillations.
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Jones, Dohring & Platzer (1998) developed an inviscid model to determine the wake
structure on a two-dimensional airfoil undergoing pitching, heaving and combined
motions. They noted a favourable comparison between the wake structure predicted
by their panel code and the experimentally observed wake for a wide range of St,
indicating that the evolution of the wake is primarily an inviscid phenomenon. Average
velocity profiles from the model also compared well to experimental results for a wide
range of St, although, for low values of St, viscous effects became dominant, and the
model could not fully account for the deflected wake at high St. Comparison to total
thrust was less accurate because the assumptions used for the simplified momentum
integral (e.g. parallel flow, free-stream pressure and insignificant unsteady components)
are not valid for such an energetic wake. The panel code was also used to determine
the propulsive efficiency over a wide range of heaving parameters. They found that for
a given St, the thrust coefficient and efficiency were greatest for low flapping frequency
(corresponding to slow flapping with relatively large amplitudes), in agreement with
the linear analysis of Garrick (1936). As the frequency was increased, the panel code
predicted much lower efficiency than linear theory, which they ascribed to the roll-up
of vorticity in the wake. Additionally, Smith, Wilkin & Williams (1996) used the panel
method of Katz & Plotkin (1991) to model the flight of a tethered sphingid moth.
Their results deviated somewhat from experimental results, most probably due to the
inability of the method to account for flow separation. More recently, Liu & Bose
(1997) developed a panel method that included spanwise flexibility.

More recently, Minotti (2002) developed a model of a flapping flat plate from
two-dimensional potential theory that included a stationary vortex near the leading
edge to maintain a regular velocity at the singularity at the leading edge. The model
provided reasonable agreement with force measurements by Dickinson, Lehmann &
Sane (1999) and Sane & Dickinson (2001).

While contributing significantly to our understanding of flapping propulsion, none
of these studies fully addresses the importance of viscous effects, as characterized by
an appropriately defined Reynolds number, Re:

Re =
U∞c

ν
, (1.2)

where c is the chord length and ν the kinematic viscosity. Of course, as the length
scales of flapping flight shrink, viscosity will play a greater role in the fluid mechanics.
In particular, flow separation becomes much more important as the flapping frequency
and amplitude increase. Indeed, experimental observations of flapping insects have
revealed that significant leading-edge vortices are generated during the wing-beat
(Ellington et al. 1996; Willmott & Ellington 1997a , b). As demonstrated numerically
by Liu et al. (1998), these vortices create large low-pressure regions that lead to the
high lift coefficients observed in insect flight. It has been theorized that many insects
fly at the limit of dynamic stall, where high lift coefficients are generated temporarily
after a sudden change in the effective angle of attack.

Gustafson & Leben (1988) and Gustafson (1996) noted the importance of separation
effects in hovering flight and identified the importance of vortex ‘splitting’ and
‘shredding’ methods whereby one vortex can be divided or destroyed by another vortex
in close proximity; splitting of a leading-edge vortex allows some of the vorticity to be
‘recaptured’ by the airfoil and precludes the loss of lift associated with a stalling airfoil.

As demonstrated theoretically (Streitlien, Triantafyllou & Triantafyllou 1996) and
experimentally (Anderson et al. 1998), the phasing of interactions between leading-
and trailing-edge vortices can greatly affect the thrust and propulsion efficiency of
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a flapping airfoil. Optimum efficiency occurs when the leading-edge vortices interact
constructively with the trailing-edge vortex, leading to two vortices deposited per
flap (Anderson et al. 1998).

More fundamentally, Gopalkrishnan et al. (1994) characterized the interactions
of vortices generated by a flapping airfoil with an oncoming vortex street: vortex
amalgamation leading to two vortices being deposited into the wake per cycle or vortex
pairing leading to four vortices added per cycle. The amalgamation can be either
constructive, leading to stronger vortices and increased thrust, of destructive, enabling
energy extraction from the oncoming flow and increasing efficiency. Alternatively,
pairing between vortices of opposite sign causes them to drift away from the centreline
and results in an expanded wake. Zhu et al. (2002) used a panel method to study the
three-dimensional vortex interactions of swimming fish and found analogous results.
Reviews of current work on fish-like swimming can be found in Pedley & Hill (1999)
and Triantafyllou, Triantafyllou & Yue (2000).

Triantafyllou et al. (1993) hypothesized that optimal efficiency is obtained when
an airfoil is flapped at the frequency of maximum spatial amplification of the wake,
based on a linear stability analysis of an average (experimental) jet profile. Using
data from the experiments of Koochesfahani (1989) and assuming that the velocity
profile is affected weakly by St, they determined that the most unstable mode in the
wake occurs from 0.25 � St � 0.35. However, they did not consider the dependence on
heaving amplitude; in this sense, they determined the optimum frequency for a given
amplitude. Experiments in a water tunnel demonstrated that the optimum efficiency
fell within the specified range. Further, an extensive literature review showed that
many swimming creatures, with a wide variety of morphologies, swim with a Strouhal
number within that same range.

Wang (2000) correlated the optimum frequency for heaving airfoils to the time
scales of vortex shedding for impulsively started airfoils. For sufficiently large local
angles of attack, an impulsively started airfoil will generate net thrust for a short
period until a leading-edge vortex is shed. Thus, the normal force vector explanation
of Knoller (1909) and Betz (1912) must be modified by the observation that in viscous
flows this force is temporally controlled by the shedding of the leading-edge vortex.
It was noted that optimum efficiency occurs when the duration of the stroke is just
inside the ‘thrust window’ that exists until the vortex is shed.

The purpose of the present contribution is two-fold: (i) to elucidate the fluid
mechanics of low-Reynolds number high-frequency flapping flight, such as on the
scale of a large insect, and (ii) to demonstrate correlations between the flow structure
and optimization of thrust and flapping efficiency. The paper will concentrate on the
heaving of a two-dimensional airfoil, since many of the phenomena of interest (e.g.
thrust generation, inversion of the vortex street, leading-edge vortex separation) can
be captured with this simple motion. We will reserve studies of pitching and lagging
motions for later.

The remainder of this paper is organized as follows: § 2 presents the formulation
of the problem and describes the governing equations and boundary conditions.
Section 3 presents the numerical implementation of the equations. The results are
presented in § 4 and discussed in § 5.

2. Problem definition
Consider a rigid two-dimensional airfoil undergoing prescribed periodic heaving

motions at zero angle of attack in an incompressible viscous flow with constant
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horizontal (chordwise) free-stream velocity, U∞. For computational simplicity, the
problem is formulated in a non-inertial reference frame fixed to the airfoil, with the
x-axis running parallel to the chord, and the y-axis in the direction of heave. The
vertical position of the airfoil in the X, Y inertial frame is denoted by Y0.

2.1. Kinematics

For a sinusoidal heaving motion,

Y0 = Ymax sin 2πf t,

where Ymax is the maximum excursion from the mean position. Introducing the
reduced frequency, k = 2πf c/U∞, the dimensionless heave amplitude, h = Ymax/c, and
the dimensionless time, τ =U∞t/c, the non-dimensional position, Y 0, of the airfoil is

Y 0 ≡ Y0

c
= h sin kτ .

Thus, the dimensionless heave velocity can be expressed as V 0 ≡ ∂Y0/∂τ = kh cos kτ .
Note that the maximum heave velocity is given by the quantity kh = 2πf Ymax/U∞,
which differs from the definition of St (equation (1.1)) by a factor of π. Being more
intuitive, we prefer to use the quantity kh to categorize the results, although conversion
to St will be made when appropriate.

2.2. Governing equations

The formulation requires the modification of the governing equations to account for
the apparent body forces on the fluid as observed from the non-inertial reference
frame. In the non-inertial frame, the non-dimensional Navier–Stokes equations are
written:

∂u
∂t

= −∇p − (u · ∇)u +
1

Re
∇2u − aY , (2.1)

where aY is the acceleration of the heaving airfoil. Using the two-dimensional vorticity

ζ ≡ (∇ × u) · k̂ (where k̂ is the unit normal vector perpendicular to the plane of flow),
and noting that the curl of the spatially constant quantity aY is zero, (2.1) reduces to

∂ζ

∂t
= −∇ · (uζ ) +

1

Re
∇2ζ. (2.2)

For incompressible flows, the continuity equation can be used to relate the stream-
function, ψ , to the vorticity by:

∇2ψ = −ζ. (2.3)

where the streamfunction, ψ , is defined by u ≡ ∇ × (ψ k̂). For convenience, the stream-
function and velocity components are separated into background, Ψ , and disturbance,
ψ ′, terms so that ψ = Ψ +ψ ′. The most convenient choice for the background flow is
the free-stream velocity, u∞ so that

u∞ ≡ ∇ × (Ψ k̂),
(2.4)

u′ ≡ ∇ × (ψ ′ k̂).

Thus, Ψ =U∞y + V0x plus an arbitrary constant taken to be zero. Note that ∇2Ψ =0
and so (2.3) reduces to

∇2ψ = ∇2ψ ′ = −ζ. (2.5)

That is, the problem has been reduced to an analytical expression for Ψ and two
partial differential equations: the familiar vorticity transport equation, (2.2), and a
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Figure 1. Sample airfoil and a portion of the mesh used in the CFD simulations.

Poisson equation for ψ ′ (2.5). The interaction between these two equations is in
the advection term for ζ , which requires the combined background and disturbance
velocity. The boundary conditions will also provide an important interaction.

2.3. Boundary conditions

The airfoil is a no-slip surface so that the vorticity at the airfoil, ζa , can be related to
the total streamfunction by

ζa = −∂2ψ

∂n2

∣∣∣∣
airfoil

(2.6)

where ∂/∂n refers to the normal derivative. The boundary condition for ψ ′ at the
airfoil is ψ ′ = −Ψ so that the ψ = 0 streamline coincides with the airfoil.

For the infinite-space problem, the appropriate boundary conditions at infinity
are that the velocity equals the free-stream velocity and the fluid is irrotational
in the inertial frame. The implementation of the truncated outer boundary in the
computational domain is discussed below.

3. Numerical implementation
The governing equations are discretized using a conformal map. A rectangular ξ, η

domain is first mapped to a circular domain using a log–polar transformation, and
the circular cylinder is mapped to an airfoil by means of a Joukowski transformation.
The latter is constructed so that the airfoil has no camber but significant radius of
curvature at the leading edge and a sharply rounded trailing edge (a cusp is not used
to avoid numerical singularities at the trailing edge). Figure 1 shows the airfoil and a
portion of a typical mesh (the actual mesh used for the simulations extended about
30 chord lengths out from the airfoil).

The governing equations are transformed from physical (x, y)-space to computa-
tional (ξ, η)-space. The vorticity transport equation becomes

h1h2

∂ζ

∂t
= −(∇ξ,η × ψ) · ∇ξ,ηζ +

1

Re
∇2

ξ,ηζ, (3.1)

where the subscripts ∇ξ,η refer to derivitives in the ξ, η domain. h1 and h2 are the
grid transformation metrics which relate the size of a grid cell in the (x, y)-domain
to the (ξ, η)-domain.
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The Poisson equation for ψ ′ becomes

∇2
ξ,ηψ

′ = −h1h2ζ. (3.2)

3.1. Boundary conditions

Boundary conditions are required for ζ (equation (2.2)) and ψ ′ (equation (2.5)). At
the airfoil, (2.6) is discretized using a second-order difference equation:

ζa =
(ψ2 − 8ψ1 + 7ψ0)

2	n2
.

At the inlet, the flow is assumed to be irrotational. At the outlet, viscous effects are
neglected so that the material derivative of the vorticity vanishes. For the stream-
function, ψ ′ = −Ψ on the airfoil, as noted previously. At the outer boundary, the
normal derivative of ψ ′ is prescribed, which amounts to specifying the tangential
velocity. At the inlet, disturbances to the free-stream flow are neglected so that

∂ψ ′

∂n

∣∣∣∣
inlet

= 0. (3.3)

Because the wake is highly unsteady, a much more ‘passive’ boundary condition must
be developed for the outlet. If viscosity is again neglected, then the material derivative
of velocity is affected only by the pressure gradient. In general, these pressure gradients
will be small, and are also neglected. Thus, at the outlet

D

Dt

(
∂ψ ′

∂n

)∣∣∣∣
outlet

= 0, (3.4)

which has a similar form to boundary condition for vorticity and allows for some
simplification of the numerical procedure. In practice, the simulations are terminated
before any significant vorticity becomes close to the outlet boundary.

3.2. Discretization

For spatial differencing of the vorticity transport equation, fourth-order centred-
differencing is used for the viscous terms, while a third-order upwind scheme is
used for the advection terms. Stepping in time is performed using a second-order
Runge–Kutta scheme. For the Poisson equation for streamfunction, the equations are
discretized using a fourth-order centred scheme and solved using a multi-grid solver.

3.3. Forces

The total force on the airfoil is a combination of pressure and viscous forces. A simpli-
fied procedure for calculating the pressure on the airfoil is based on the relationship

∂p

∂s
= − 1

Re

∂ζ

∂n
+ a · ds, (3.5)

which relates the pressure gradient along a no-slip wall to the normal derivative of
vorticity, modified for the non-inertial reference frame (see equation (2.1)). The
pressure force at every point on the airfoil is found by assuming an arbitrary value of
pressure at one point (the trailing edge) and marching through successive grid points
using (3.5).

The viscous force is found from the shear stress on the airfoil, τs , which is related
to the tangential velocity, us , by

τs =
1

Re

∂us

∂n
= − 1

Re
ζa. (3.6)
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Once the pressure and viscous forces are known at each point, they are integrated
numerically to find the total force components, FX and FY , and moment, M , on the
airfoil.

3.4. Power

The instantaneous power can be calculated from the total force by multiplying the
force components by the appropriate velocity components in the inertial frame. The
input power coefficient is the power needed to heave the airfoil, Pi = FY V0. Note that
the power input is negative by this definition. The output power coefficient from
thrust is Po = −FXU∞, so that the output power is positive when thrust is produced
and negative for drag.

Integrating the instantaneous power yields the total work required to heave the
airfoil, Wi , and the work done in propelling it, Wo. The ratio of total work out to
work in is the thrust efficiency, η = −Wo/Wi . Note that η ranges from −∞ for steady
(non-heaving) flight to 1.0 for theoretically perfect efficiency.

3.5. Initial conditions and code validation

Inviscid solutions were used as the initial conditions for all simulations. Using a
viscous steady-flow solution had no effect on the long-term solutions. Validation and
convergence studies of the code are presented in Appendix A.

4. Results
4.1. Flow patterns

The numerical model described above is used to simulate a heaving airfoil with
frequencies ranging from 2.0 � k � 10.0 and maximum heave velocities from 0.8 � kh �
1.5 (0.25 � St � 0.48) at Re = 500. A wide variety of flow patterns are observed in the
parameter space studied. The long-term solutions for flows with kh = 0.8 are periodic
and symmetric, meaning each upstroke and downstroke are mirror images. For
kh = 1.0, asymmetric solutions are observed. For kh � 1.2, aperiodic, quasi-periodic,
and asymmetric solutions are common.

The term aperiodic is self-explanatory; by quasi-periodic we mean that for several
periods the flow changes relatively little from period to period until there is a large
qualitative change lasting for a few strokes, after which the flow returns to its former
slowly evolving state. Asymmetric solutions are those where there is no symmetry in
either the forces on the airfoil or the vorticity in the wake in the direction of heaving,
as when the wake is deflected from the mean heave position.

The reduced frequency, k, is the primary factor governing the topology of the
leading-edge vortex (LEV), with kh being a secondary factor. For low k, the LEV
separates and advects downstream, where it often interacts with the trailing-edge
vortex (TEV). As k increases, the vortex separates later in each stroke until, instead
of advecting downstream, it is stretched and dissipated by the nascent LEV on the
subsequent stroke. For high kh there is a transition region of aperiodic flows where
some LEVs are shed and others are dissipated. Further, for high k and kh, the
LEV can circumnavigate the leading edge to the other side of the airfoil and advect
downstream either in the free stream or within the boundary layer on that side.

Figure 2 outlines the type of flow observed for each simulation as a function of
frequency, k, and maximum heave velocity, kh. Representative examples of each flow
regime will be discussed below.
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Figure 2. Qualitative results for all simulations, based on k and kh. per. = periodic; aper. =
aperiodic; sym.= symmetric; asym.= asymmetric; LEV shed = LEV shed into flow; LEV
diss. = LEV dissipated by interaction with the leading edge/nascent LEVs; LEV circ. = LEV
circumnavigates the leading edge and is shed on the other side.

4.1.1. kh = 0.8 (St ≈ 0.25)

For kh = 0.8 all simulations produce periodic and symmetric results. Figure 3 shows
the vorticity contours for the downstroke of a simulation at k =2.0. During the first
half of the stroke, vortex filaments form at both the leading and trailing edges. At
the leading edge, the vortex filament begins to roll up into a vortex at mid-stroke
and the nascent LEV continues to be fed by this filament for the second half of the
stroke. As the airfoil motion reverses, the vortex filament weakens and a significant
secondary vortex extends from the airfoil, cutting off the filament feeding the LEV.
The LEV then advects downstream.

The fate of the LEV can be determined by observing the LEV created during the
previous upstroke, which is underneath the airfoil near mid-chord at the start of the
downstroke (because the flow is symmetric for this case, the upstroke is a mirror
image of the downstroke). The LEV advects downstream where interaction with the
trailing edge cuts off the vortex filament emanating from the trailing edge that formed
at the start of the downstroke. After the LEV passes, the vortex filament reforms for
the remainder of the stroke and feeds the passing LEV. Within three chord lengths
downstream, the LEV, its secondary vortex, and the TEV coalesce into a single vortex.

As the heaving frequency increases, the time scale of the heaving motion approaches
the hydrodynamic time scale of the flow. At k = 3.333, the two time scales are nearly
equal and the LEV reaches the trailing edge just as the TEV (with opposite sense of
rotation) is beginning to form. As shown in figure 4, the LEV is entrained in the
nascent TEV and only one vortex, a much weakened TEV, is deposited into the wake
per stroke.

As the frequency increases further, the LEV remains near the leading edge for a
larger portion of the subsequent stroke where its strength is reduced substantially by
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Figure 3. Simulated vorticity field for the downstroke of a heaving airfoil with k = 2.0,
kh =0.8. Contours are evenly spaced at ζ = ±(2, 6, 10, . . .) with the sign determined by the
sense of rotation.
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Figure 4. Simulated vorticity field for the downstroke of a heaving airfoil with k =3.333,
kh =0.8. Contours are evenly spaced at ζ = ±(2, 6, 10, . . .) with the sign determined by the
sense of rotation.

interaction with the airfoil. Figure 5 shows the vorticity field for the downstroke of a
simulation with k =6.667. Notice that the LEV from the previous upstroke remains
stationary underneath the airfoil near the quarter-chord point for a substantial portion
of the stroke (again, the flow is symmetric). During this time it partially dissipates
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Figure 5. Simulated vorticity field for the downstroke of a heaving airfoil with k = 6.667,
kh = 0.8. Contours are evenly spaced at ζ = ±(2, 6, 10, . . .) with the sign determined by the
sense of rotation.
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Figure 6. Simulated vorticity field for the downstroke of a heaving airfoil with k = 10.0,
kh = 0.8. Contours are evenly spaced at ζ = ±(2, 6, 10, . . .) with the sign determined by the
sense of rotation.

before moving along the underside of the airfoil. The remnants of the LEV shed
from an earlier upstroke can be seen underneath the airfoil near the two-thirds chord
point. This remnant ‘spills over’ the trailing edge on the downstroke and reinforces
the growing TEV.

Figure 6 shows a sequence for k = 10.0. Note, however, that the LEV produced
on the previous upstroke is stretched partially around the leading edge on the
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Figure 7. Simulated vorticity field for the downstroke of a heaving airfoil with k = 3.0,
kh =1.0. Contours are evenly spaced at ζ = ±(2, 6, 10, . . .) with the sign determined by the
sense of rotation.
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Figure 8. Simulated vorticity field at the upper and lower limits of motion for a heaving
airfoil with k = 5.714, kh = 1.0. Contours are evenly spaced at ζ = ±(2, 6, 10, . . .) with the sign
determined by the sense of rotation.

downstroke, and is almost entirely dissipated – vortex ‘shredding’ to use the termino-
logy of Freymuth (1985).

4.1.2. kh = 1.0 (St ≈ 0.32)

For kh = 1.0, the simulation at k = 2.0 is similar to that of the previous section. At
k = 3.0, however, the LEV pairs up with the TEV, but the two do not immediately
merge. Thus, four vortices are shed into the wake with each flap and the wake is much
wider than it is in the other cases, much like the expanding wake of Gopalkrishnan
et al. (1994). As seen in figure 7, the LEV, being much weaker than the TEV, revolves
around the TEV until it is stretched and shredded between successive TEVs. At
k = 3.333, the vortices again interact destructively, and only two vortices are shed per
flap, as in the previous section.

In the mid- to high-frequency range, a noticeable asymmetry develops. At k = 5.0,
the flow is symmetric, with the LEV separating and advecting downstream. At
k = 5.714, however, the LEV produced on the upstroke is stretched around the LEV
of opposite orientation on the subsequent downstroke. The stretching of the LEV
produced on the downstroke is much less intense, and a significant vortex is carried
downstream. Figure 8 shows a comparison between the vorticity fields at the upper
and lower extremes of the heaving motion.

The asymmetry in the flow leads to an asymmetry in the power coefficients, as well.
Figure 9(a) shows the average power coefficients for each stroke for the same simula-
tion. The coefficients are periodic, but more power is output during the downstroke
than during the upstroke. After the initial start-up of the airfoil, the asymmetry
stabilizes and persists for the duration of the simulation. Asymmetric solutions are
found until k � 8.0, where the leading-edge vortices on both strokes are again stretched
and dissipated equally.
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Figure 9. Average power coefficients for each stroke for a simulation of a heaving airfoil with
(a) k = 5.714, kh = 1.0; (b) k = 10.0, kh =1.2. Each point represents the average over the stroke
ending at the time indicated on the horizontal axis. −−−, input power; ——, output power; · · ·,
efficiency.

–1

0

1(a)

–1

0

1(b)

–1

0

1(c)

–1

0

1(d )

Figure 10. Simulated vorticity field for subsequent strokes of a heaving airfoil with k = 5.0,
kh = 1.2. Each snapshot is taken at the upper extreme of the heaving motion to show the
aperiodic nature of the wake. Contours are evenly spaced at ζ = ±(2, 6, 10, . . .) with the sign
determined by the sense of rotation.

4.1.3. kh = 1.2 (St ≈ 0.38)

For kh = 1.2, the simulations at low frequency are similar to those of the previous
sections, with the exception of a significant, transient wake deflection at k = 2.0. In
the intermediate frequencies, aperiodic solutions are found. At k = 4.444, the flow is
symmetric and periodic, and the LEV separates and advects downstream, similarly
to the cases at lower kh. At k = 5.333, the flow is also symmetric and periodic,
but the LEV is stretched around the leading edge and dissipated. Between these
frequencies, however, the flow is aperiodic, with some LEVs being dissipated and
some being advected downstream. Figure 10 shows the variation of the vorticity field
for subsequent periods at k =5.0. Residual vorticity from previous heaving motions
leads to small variations in the location of the LEV during its formation which lead
to qualitatively large changes in the flow. This phenomenon persists for the duration
of the simulation.
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Figure 11. Simulated vorticity field for the downstroke of a heaving airfoil with k =4.444,
kh =1.5. Contours are evenly spaced at ζ = ±(2, 6, 10, . . .) with the sign determined by the
sense of rotation.

For k � 6.67, the flows are quasi-periodic in that the position of the LEV from
period to period changes very little until all of a sudden it is forced around the leading
edge of the airfoil and is advected downstream on the other side, reminiscent of a
relaxation oscillation. The phenomenon is most pronounced for k = 10.0. Figure 9(b)
shows the average power coefficients and efficiency for each stroke for this case. The
envelope of the force curve clearly demonstrates the relaxation oscillation nature of
the phenomenon.

4.1.4. kh = 1.5 (St ≈ 0.48)

At kh = 1.5, the deflected wake at k = 2.0 persists for significantly longer than it
does at kh = 1.2. Analysis of the forces on the airfoil and the vorticity field show that
the asymmetry in the vertical forces and the deflection angle of the wake vortices are
decreasing monotonically. It was not feasible to continue the simulation to determine
if the long-term solution has a deflected wake, although it appears that the solution
will eventually become symmetric.

The intermediate frequencies differ from the cases where kh = 1.2 in that instead of
the LEVs being stretched around the leading edge, they circumnavigate the leading
edge and are shed into the flow on the opposite side of the airfoil. Figure 11 shows
a series of snapshots for the downstroke from the simulation with k = 4.444. In the
first frame, the LEV created on the previous downstroke (LEVd) has circumnavigated
the leading edge and is paired up with the vortex created on the just completed
upstroke (LEVu). In the second frame, LEVd continues to move around LEVu. In the
final frame (near the end of the downstroke), the two LEVs have separated owing to
interaction with the airfoil, with LEVd moving downstream along the airfoil. LEVu

is beginning to circumnavigate the leading edge and the process is repeated on each
subsequent stroke.

At high frequencies, the flows are highly aperiodic with large wake deflections.
Figure 12 shows two vorticity snapshots from a simulation with k = 10.0. The direction
in which the wake is deflected is observed to switch from upward to downward (a
similar phenomenon occurs at k = 8.0). This switching was reported by Jones et al.
(1998) for high-frequency heaving in water-tunnel experiments, although they were
not able to demonstrate switching in their inviscid (panel method) modelling. To
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Figure 12. Simulated vorticity field for of a simulated heaving airfoil with k =10.0, kh = 1.5
showing switching of deflected wake. Contours are evenly spaced at ζ = ±(2, 6, 10, . . .) with
the sign determined by the sense of rotation.
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our knowledge, this is the first report of a numerical simulation that reproduces this
phenomenon.

4.2. Efficiency

4.2.1. Power and efficiency

Figure 13 shows the average power components and efficiency for each of the simu-
lations. Because many of the simulations produce aperiodic solutions, averages were
taken over many flaps (starting after several flaps had been made to allow for the
supression of the initial transients). The overall efficiency is very low: ηmax ≈ 11% at
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Figure 14. (a) Output power for k = 2.0 and k = 5.333 (kh =1.0) over one heaving cycle.
(b) The vertical position, Y/Ymax , of each airfoil in its respective flap.

k = 5.333 and kh = 1.2. In comparison, Wang (2000) found the maximum efficiency
for a thin ellipse to be ≈10% at similar values of frequency and amplitude.

The trends in heaving efficiency can be linked to the flow structure; in particular,
the evolution and fate of the LEV noticeably affects the forces on the airfoil and
the efficiency. For kh � 1.0, the substantial jump in efficiency in the intermediate
frequencies corresponds directly to the transition from a shed LEV to one that
is dissipated. This correlation is not observed for kh = 0.8, but it is noted that for
kh = 0.8 not only is the overall efficiency extremely poor (η � 4.5%), but the transition
from shed to dissipated LEVs is gradual.

Additionally, the comparatively low efficiency observed at k =3.333 for all kh in this
study corresponds directly to the negative interference at the trailing edge between
the LEV and the TEV of opposite sign (see figure 4, for example).

Figure 14 shows the horizontal (output) power components for two different
simulations with kh = 1.0: k =2.0 (low efficiency) and k = 5.333 (high efficiency).
The horizontal axes are scaled by the appropriate k so that the strokes from each
simulation coincide. For the k = 5.333 case, the output power rises and falls smoothly
and is roughly correlated with the velocity of the airfoil; peak power occurs when the
airfoil is near the mid-stroke and is lowest when the airfoil is near the extremes. For
the k = 2.0 case, the output power initially rises at the start of each stroke but before
the airfoil reaches mid-stroke, the power temporarily levels off, after which it remains
substantially below the k = 5.333 case. This ‘dip’ in power corresponds directly to the
separation of the LEV.

At high frequencies, the efficiency slowly tapers off as k increases for all kh, mimick-
ing the theoretical calculations for inviscid heaving airfoils. (A direct comparsion is not
practical, as viscous effects reduce the thrust on the airfoil substantially.) Interaction
between the airfoil and the shed vortices induces a drag on the airfoil, which has a
stronger effect at higher frequencies owing to the greater proximity of the vortices.
In addition, for high values of kh, the wakes are highly energized by the deposition
of many vortices (LEVs, TEVs, and secondary vortices) into the flow. Much of this
energy does not go towards providing useful work (thrust) and is thus wasted.
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Figure 15. Imaginary component of the most unstable modes for simulations with kh = 1.0.
The diamonds indicate the heaving frequency used to obtain each velocity profile.

Finally, whether or not a flow is periodic appears to have little effect on the propul-
sive efficiency. For example, the simulations with k =4.444 and k =5.0 at kh = 1.2
are aperiodic, with efficiencies intermediate to the periodic cases with k = 4.0 and
k = 5.333. Additionally, the simulated flow k = 5.333 and kh = 1.5 is aperiodic but the
efficiency is only slightly less than the periodic case at k = 5.0.

4.2.2. Linear stability analysis

Following Triantafyllou et al. (1993), the most unstable spatial mode for the
average horizontal velocity profiles for each of the simulations are determined (see
Appendix B). These velocity profiles clearly account for the effect of heaving ampli-
tude. The velocity profiles are calculated one chord length downstream of the trailing
edge, and the (small) vertical components are neglected. The spatial growth rate of
the most unstable mode (the most negative imaginary part of the wavenumber) is
calculated as a function of real frequency, ω, and plotted to determine the frequency
corresponding to the maximum spatial amplification. Figure 15 shows the relationship
between ω and the imaginary part of the wavenumber, αi , for the most unstable mode
for each of the simulations at kh = 1.0. Each curve in this figure is identified by the
heaving frequency, k, used to obtain each velocity profile.

Most of the curves are nested in an orderly way within one another; a few deviate
noticeably. The curve determined from the simulation with k = 3.0 is shifted towards
lower values of ω and has a much larger (negative) imaginary part than expected
from the general trend. Additionally, the curves calculated from the simulations at
k = 4.444 and k = 4.706 have smaller (negative) imaginary parts than expected and are
shifted towards the higher frequencies. These shifts can be correlated to the qualitative
shape of the velocity profiles (shown in figure 16). Whereas most of the profiles show
a sharp peak in the velocity at the mid-line, the velocity profile for the k = 3.0 case is
much broader, as expected for the expanding wake produced in this simulation. The
profiles for k = 4.444 and k =4.706 show significant ‘hips’ above and below the main
velocity jet.

There is a strong correlation between heaving efficiency and the separation between
the heaving frequency for a given profile and the frequency resulting in the maximum
spatial amplification of this profile. The highest efficiencies for kh = 1.0 occur at
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Figure 16. Average velocity profiles for simulations with kh = 1.0. (a) k =4.444, 4.706;
(b) k � 5.333; (c) k =3.0; (d) other.

k = 5.333 and k = 5.714, where the airfoil is driven almost exactly at the most unstable
frequency. As the heaving frequency increases, the driving frequency becomes greater
than the frequency of the most unstable mode. Similarly, for low-frequency heaving,
the driving frequency is lower than the frequency of the most unstable mode, with
the notable exception of the case where k = 3.0. Here, the driving frequency is again
very near the frequency of the most unstable mode. While this does not correspond
to the global maximum efficiency, it does correspond to a substantial local maximum
efficiency, as seen in figure 13. Similar results were found for each value of kh.

5. Discussion
Over the parameter ranges covered in this numerical study, several distinct solution

topologies are observed, including aperiodic and asymmetric solutions. In their
comprehensive experimental investigation of flow around an oscillating cylinder,
Williamson & Roshko (1988) identified a number of different flow regimes similar to
those observed in this work, including deflected wakes as well as various numbers of
vortices shed into the wake per oscillation, symmetrically or asymmetrically. Addi-
tionally, for a large portion of their parameter space, they found no stable pattern.
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We find that the wake patterns depend primarily on the fate of the LEV: whether
or not it is shed, and how it interacts with the TEV. When shed, the LEV can either
reinforce (positively or negatively) the TEV, resulting in two vortices shed into the
wake per flap, or it can pair up with the TEV, resulting in four vortices shed per flap.
This finding is in agreement with Gopalkrishnan et al. (1994) for interactions with
oncoming vortex streets.

Whereas Williamson & Roshko (1988) found sharp changes between the various
flow regimes in their study of a circular cylinder, the results here demonstrate that for
a heaving airfoil the transition regions are often characterized by aperiodic flows that
‘switch’ between the neighbouring flow regimes. Additionally, at high kh and high k,
all of the simulations produced aperiodic results. As noted, the aperiodic nature of
the flows can be traced to the topology of the LEV; small secular effects cause large
changes in the dynamics of the LEV.

The fate of the LEV can also be correlated to the heaving efficiency. While the
overall efficiency was low, large increases in efficiency occur at the transition from a
shed LEV to one that is dissipated. Wang (2000) noted that the heaving frequency
needed for maximum efficiency should correspond to the period with which vortices
are shed from impulsively started airfoils, since this shedding causes the forces on
the airfoil to drop substantially. Indeed, it is confirmed here that the timing of the
separation of the LEV is crucial to the heaving efficiency, with a significant gain in
efficiency occurring when the LEV remains attached for the duration of each stroke.
The results are also in accordance with Gustafson & Leben (1988) and Gustafson
(1996) in that some of the vorticity contained in the LEV is subsequently recaptured
by the airfoil.

In agreement with Anderson et al. (1998), high thrust coefficients and propulsion
efficiencies correspond to the positive reinforcement of the TEV by the LEV. Addi-
tionally, thrust and efficiency are greatly reduced when there is negative reinforcement
between the LEV and TEV. This differs from Gopalkrishnan et al. (1994), who noted
that energy extraction occurs when airfoil-generated vortices negatively interact with
an oncoming vortex street. However, the primary source of upstream vorticity was a
separate bluff body, which allowed energy extraction independent of vortex creation.
Because the interaction in this study is with vortices produced at the leading edge of
the same airfoil, no net energy extraction can occur.

The results presented here also differ from the results of Zhu et al. (2002), who
found that the propulsive efficiency of a ‘robo-tuna’ in an inviscid model was increased
when negative reinforcement of vortices occurred. In this case, the upstream vorticity
was created by a different hydrodynamic surface on the same structure (dorsal vs. tail
fins). Similarly, Tuncer & Platzer (1996) noted that a large increase in efficiency is
possible when a stationary airfoil is placed in the wake of a heaving airfoil. In each
of these cases, instead of wasting the energy contained in the vortices created by an
upstream structure, the energy is partially recaptured by the downstream structure.
Because the current model includes only a single airfoil, energy recapture in this sense
is not possible.

At higher frequencies, the comparatively slow tapering off of efficiency with
increased k is reminiscent of efficiency curves predicted by ideal flow models (Garrick
1936; Jones & Platzer 1997; Jones et al. 1998). As the heave frequency is increased,
the wavelength of the wake vortices is shortened and shed vortices remain nearer to
the trailing edge for a greater portion of each flap, and the increased interaction leads
to lower efficiency (Jones & Platzer 1997). Note that for high-frequency flapping, the
flow is most like an inviscid flow in that vorticity is shed primarily from the trailing
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edge. The analogy does not strictly hold for high kh, however, as the LEV and its
secondary vortices are occasionally shed into the wake.

In direct contrast to ideal flow models, the maximum efficiency is found at an
intermediate frequency. Whereas ideal flow models approach maximum efficiency as
k → 0, our simulation (and others) shows that the early separation of the LEV as
k decreases past a (kh dependent) threshold frequency results in a large decrease in
thrust forces and efficiency.

While the current study focuses solely on heaving motions, it is expected that
analogous relationships will hold for motions with pitching and lagging. With pitching,
the behaviour and evolution of the LEV can be controlled much better. Larger
amplitudes and lower frequencies can be acheived without the premature separation
of the LEV and subsequent drop in forces on the airfoil. Indeed, experimental and
computational studies of insect flight demonstrate that the LEV remains attached
to the leading edge of the wing for the majority of the stroke and is shed by rapid
pronation or supination at the end of each stroke (Liu et al. 1998; Ellington et al.
1996). Additionally, for a real wing a major contributor to the LEV remaining attached
is the axial flow along the three-dimensional LEV. Absent that in two-dimensions, the
pitching of the wing will assist in the streamlining of the motion and control of the
LEV.

This work was supported in part by NASA Grant NAG-1-01120, a fellowship from
the Virginia Space Grant Consortium (G.C.L.), and the John H. and Dorothy W.
Sidebottom and Carlos A. and Esther H. Farrar Fellowships from the University of
Virginia (G.C.L.).

Appendix A. Validation of the code
The performance of the model was assessed through several test simulations.

Preliminarily, flow around a stationary circular cylinder was simulated at Re =100
using a 128 × 384 grid. The simulated St was 0.164 and the force coefficients on
the cylinder were found to be CD,avg = 1.31, CL,rms = 0.226 and CL,max = 0.319, all of
which agree well with published numerical and experimental results (see Tritton 1959;
König, Eisenlohr & Eckelmann 1990; Zhang et al. 1995; Tang & Aubry 1997, for
example).

To assess the dynamics of the vortex wake, the simulated flow behind an impulsively
started cylinder was compared to the experimental results of Bouard & Coutanceau
(1980). Figure 17(a) shows the evolution with time of the closed wake length, L, and
the coodinates of the main eddy core, Xe, Ye, for Re =550. Given the three-dimensional
nature of the experimental problem and the difference in starting conditions, the
agreement is very good.

Additionally, the computational and experimental velocities along the mean wake
line were compared for the same flow conditions as above. Figure 17(b) shows a
comparison between computed and experimental flows. Again, the agreement is very
good.

To ascertain the effects of grid refinement on the solution, a heaving airfoil was
simulated with k = 4.0, h = 0.25 and Re =1000 using a number of grids. Figure 18
shows the vorticity at the leading and trailing edges after one stroke for various levels
of grid refinement (where the relative grid spacing of 1 corresponds to a 512 × 512
grid). The theoretical solution at zero grid spacing as calculated by Richardson
extrapolation is also plotted. The leading and trailing regions are chosen because they
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are characterized by very strong gradients and are expected to be the most difficult
to resolve.

Using the 512 × 512, 384 × 384 and 288 × 288 grids, the order of convergence was
calculated to be 2.48 at the leading edge and 3.82 at the trailing edge. Additionally,
the convergence rate of the velocity at several points in the wake was computed to
be between 2.0 and 3.0.

Note that the values for the 256 × 256 grid (relative grid spacing of 2) are within
1% of the theoretical solution at zero grid spacing and are well within the asymptotic
range of convergence. Given the number of simulations needed for the parametric
studies, this resolution was chosen as the best compromise between computational
speed and accuracy.
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Appendix B. Linear stability analysis
For parallel flows with a horizontal velocity profile U (y), the linear stability of the

flow is governed by the Orr–Sommerfeld equation:{(
d2

dy
− α2

)2

− iRe

[
(αU − ω)

(
d2

dy
− α2

)
− αU ′′

]}
φ = 0, (B 1)

where the primes denote differentiation with respect to y. Disturbances are assumed
to be of the form:

ψ̂ ≡ φ(y) e−i(αx−ωt),

where α is the (complex) wavenumber and ω the frequency of the disturbance. Thus,
if the imaginary part of the wavenumber, αi is negative, the disturbance will grow in
space downstream.

Equation (B 1) is discretized using fourth-order finite differences and solved by
choosing ω real and solving the resulting eigenvalue problem for α. Two hundred
evenly spaced points in the wake were used for the profile U (y) (no significant
difference in solutions was found using 400 points).
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